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We model an interface layer connecting two parts of a solid body by N parallel elastic springs connecting
two rigid blocks. We load the system by a shear force acting on the top side. The springs have equal stiffness
but are ruptured randomly when the load reaches a critical value. For the considered system, we calculate the
shear modulus G as a function of the order parameter � describing the state of damage, and also the “spalled”
material �burst� size distribution. In particular, we evaluate the relation between the damage parameter and the
applied force and explore the behavior in the vicinity of material breakdown. Using this simple model for
material breakdown, we show that damage, caused by applied shear forces, is analogous to a first-order phase
transition. The scaling behavior of G with � is explored analytically and numerically, close to �=0 and �
=1 and in the vicinity of �c, when the shear load is close to but below the threshold force that causes material
breakdown. Our model calculation represents a first approximation of a system subject to wear induced loads.
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I. INTRODUCTION

The damage of solids subject to external loads is a pro-
gressive physical process, which eventually may lead to ma-
terial breakdown. At the microscopic scale, damage is caused
by the localization of the stress field in the neighborhood of
defects or at interfaces that induce the breaking of the atomic
bonds. At a mesoscopic scale there is the interaction and
coalescence of microscopic cracks or vacancies �voids�,
which together initiate a macroscopic crack.

One category of material damage problems, of great tech-
nological and fundamental interest, is the deterioration of
solid surfaces in contact induced by relative motion. These
problems belong to the field of tribology, in which friction
and wear of materials are studied �1,2�. The first phenomeno-
logical approach to the problem of wear dates back to the
1940s, when Holm �3� provided a simple description for
wear of solids, which later was rederived and applied by
Archard �4�. The Holm-Archard wear description states that
the amount of wear or the worn mass between two rubbing
surfaces is proportional to sliding work �or dissipation en-
ergy due to friction� divided by the hardness of the surface;
simply m�FNx / p, where m is the worn mass, FN the normal
force or the force applied normal to the interface, x the dis-
tance slid, and p the penetration hardness, which is related to
the surface tension of the solid, �, in the manner p��3 �see
�2��. A mass loss from a solid body associates with heat
dissipated to the environment, or from thermodynamics,
dQ�T dS, where dQ is the increment of heat exchange, T
the temperature, and dS the change in entropy. A shear force
FS applied to one of the bodies in a direction parallel to the
interface plane, causes slip �a relative motion between parts
of the interface� when FS=�FN, where � is the coefficient of
friction. This is Amontons’ second law of macroscopic fric-
tion, formulated more than 200 years ago �1�. Setting
dQ=�FNdx and �=G / p, with G denoting the shear strength

of the softer material, we can express the Holm-Archard de-
scription as dm�T dS /G, i.e., the worn mass is proportional
to the production of entropy and inversely to the shear
strength of the softer material.

The aim of our study is to investigate the manner in which
a solid material breaks down, when it is subjected to a shear
force that reaches a certain critical value, by using a simple
model for material damage. The system under study is de-
scribed by N parallel elastic springs connecting two rigid
blocks. The system is loaded with a shear force acting on the
top side. If the relative motion is slow and the system is well
cooled, it is possible to neglect the heat generated at the
contact. Furthermore, neglecting the influence of the normal
load, which mainly introduces compressive stresses, and sup-
posing that the crack path is limited to the interface between
the solid blocks, we arrive at the system studied in this paper.
The model can represent rupture of a weld between two solid
bodies due to shear forces.

A solid body subject to stress can be considered as being
in a metastable state. It can transform in a self-organized
manner to a stable fracture state by formation of cracks. This
self-organized behavior of debonding in solids, which is the
start of the damage process, is theoretically analogous to the
phenomenon of nucleation in first-order phase transition
�5–7�. Zapperi et al. �8,9� have utilized this analogy to study
the global breakdown of disordered media under external
loads. They used a two-dimensional lattice model, in which
each bond of the lattice represents an elastic spring that
breaks when it is stretched beyond a threshold value gov-
erned by a probability distribution. They studied numerically
the random fuse model �RFM� and a spring network in the
framework of a mean-field theory. They observed that the
breakdown is preceded by avalanche events, which is analo-
gous to the formation of the droplets observed near a spin-
odal decomposition �10,11�.
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The lattice or discrete modeling approach to material
damage dates back to the 1926 work of Peirce, which is
presently known as the global sharing fiber bundle �12�.
Peirce considered N parallel fibers, each with its own rupture
threshold. The fibers were linked in such a way that when
one link failed, the load was transformed to and shared
equally among all the intact links. Later, Daniels �13� studied
and extended this model in detail and determined the
asymptotic distribution of the bundle strength for large N.
Sornette �14� evaluated the failure characteristic of N inde-
pendent vertical lines linked in parallel with identical spring
constants and random failure thresholds. He showed that the
rupture properties of this system are quite distinct from sys-
tems that are linked in series. Furthermore, Sornette identi-
fied different regimes of rupture depending on the range of
stresses: �i� an elastic-reversible behavior for stresses below
a certain threshold �1 at which the first link failed, �ii� a
stress range �1��N, where the system exhibited a nonlinear
elastic but reversible behavior, and finally, �iii� for ���N
global failure. Moreover, Sornette showed that the
asymptotic properties of global failure threshold of the net-
work system can be explained in terms of the central limit
theorem of statistics. A review of rupture models can be
found in Sornette’s book �15�. The book by Hermann and
Roux offers a review of the field up to 1990 �16�. Hemmer
and Hansen �17� studied and calculated the distribution of
burst avalanches in fiber bundles. They found that for a large
class of failure threshold distributions, the bursts are distrib-
uted according to an asymptotic scaling law s−5/2 for simul-
taneous rupture of s fibers.

In this paper, we pursue a similar approach as Zapperi et
al. �9� to investigate analytically and numerically the break-
down of disordered media subject to surface loads. We en-
visage that the solid, subjected to shear loading, contains an
interface layer, which consists of a network of parallel
springs. We study the behavior of the shear modulus, the
order parameter characterizing the state of damage and burst
�avalanche� size distribution. We compare the universality of
our results with some other failure models, e.g., the fiber
bundle models, and discuss our results in the context of the
magnetic system.

The organization of this paper is as follows. In Sec. II, we
present the physical model and its associating constitutive
relations. In Sec. III, we outline the method of computation,
numerical and analytical, for the evaluation of the shear
modulus, the variation of the applied load with the order
parameter, the critical exponents, and the avalanche size dis-
tribution. The results of our computations are presented in
Sec. IV and discussed in Sec. V.

II. MODEL

Consider an interface layer connecting two parts of a solid
body consisting of N equi-spaced parallel springs of equal
length l with spring constants kj and randomly distributed
rupture deformation thresholds Dj, where j� �1,N�. Initially
the spring constants will be set equal �kj =k�. If a spring is
stretched beyond its rupture threshold, it will lose its load
carrying capacity, i.e., kj =0. The springs are loaded with a

force F acting parallel to the upper surface simulating the
shear component of a wear-inducing load �Fig. 1�. Each
spring carries the load Fj =kj	 j, where 	 j = lj − l denotes the
displacement of spring j. Assuming linear deformation, the
deformation of spring i can be written as

	i =
N − i

N − 1
	1 +

i − 1

N − 1
	N, �1�

where 	1 and 	N are the displacements of the end springs.
The state of equilibrium gives

F = �
i=1

N

Fi = �
i=1

N

ki	i, �
i=2

N

Fi�i − 1�a = 0, �2�

where the equation on the right states that the sum of the
moments of all the forces acting on the body is zero and a
denotes the lattice spacing. Equations �1� and �2� are com-
bined to find the boundary displacements

	1 = F�N − 1���
i=1

N

ki�N − i� −

�
i=2

N

ki�i − 1��N − i�

�
i=2

N

ki�i − 1�2


�
i=1

N

ki�i − 1��
−1

, �3�

	N = − 	1

�
i=2

N

ki�i − 1��N − i�

�
i=2

N

ki�i − 1�2

. �4�

FIG. 1. N parallel springs, connecting bodies I and II, subjected
to a shear load F.
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Let us introduce the dimensionless variables �i=ki /k,
�i=	i / l, ri=Di / l, and f =F / �klN�; then Eq. �1� gives the ex-
pression for the strain of spring i, viz.,

�i = NfKi � Nf� Xi
N

�
j=1

N

� jXj
N� , �5�

where

Xi
N = �N − i� − SN�i − 1�, SN �

�
i=2

N

�i�i − 1��N − i�

�
i=2

N

�i�i − 1�2

, �6�

with properties XN
N=−SNX1

N and �i=�1−�i /ri�, where
�x�=1 for x�0 and �x�=0 for x�0.

We now express the total dissipated energy due to break-
ing of springs,

E =
1

2�
i=1

N

ki�	i
2 − Di

2� , �7�

which can be rewritten in terms of the dimensionless vari-
ables in the form

E	�
 �
E

kl2 =
1

2�
i=1

N

�i��i
2 − ri

2� . �8�

We further rewrite this equation in terms of the external
applied force f using Eq. �5�, viz.,

E	�
 =
1

2
� Nf2

G	�

− �

i=1

N

�iri
2� , �9�

where G	�
 is given by

G	�
 = �N�
j=1

N

� jKj
2�−1

. �10�

Here, G can be interpreted as a global shear modulus of
the lattice. It depends on the number of broken springs and
the order in which the springs break.

We define the order parameter for the system

� =
1

N
�

i

N

�i. �11�

Then Eq. �9� is expressed in the form

E =
1

2�
i=1

N

�i� f2

�G���
− ri

2� , �12�

where G��� is reexpressed as a function of the order param-
eter. As has been shown by Zapperi et al. �9�, in analogy with
the random field Ising model �18�, the self-consistency re-
quirement on � yields the following integral equation �see,
e.g., the Appendix in �19��:

� = 1 − 
0

f/��G���
��r�dr , �13�

where ��r� is the probability distribution function for the
system breakdown.

The susceptibility � for the system breakdown is then
calculated according to

� �
d�

df
= −

y��y�
f − y2��y�h�

, �14�

where

y =
f

��G���
, h� =

1

2

G��� + �G����
��G���

, �15�

with G�=dG /d�. At the onset of breakdown, f = fc and
�=�c, the susceptibility diverges; this corresponds to

yc��yc� =
2�cG��c�

G��c� + �cG���c�
, �16�

with yc= fc / ��cG��c��1/2. We note that by specifying the
form of the distribution function �, Eq. �16� determines
G��c�. In particular, for �=c, where c is a constant, the
differential equation �16� can be solved to give

G��c� =
c2fc

2

�c��0 − �c�2 , �17�

where �0��c is an integration constant, which can be de-
termined by computation.

For f � fc, in the vicinity of fc, the susceptibility scales as
�9�

� =
d�

df
� �fc − f�−1/2. �18�

Similarly, the corresponding description for the order pa-
rameter is

� − �c � �fc − f�1/2. �19�

Both relations �18� and �19� are the mean-field theory
predictions �see, e.g., the Appendix in �19��.

The shear modulus G��� is expected to obey, in general, a
universal scaling law for ��0, in the form

G��� = G0�� −
1

N
���, �20�

where G0 is a material constant and � is a universal constant
determined by experiment or computation. It is determined
by rearranging Eq. �20�,

� = lim
�→0

ln�G����
ln���

. �21�

Finally in our analysis, we consider the concept of burst
avalanche distribution �17�. This concept has relevance to a
system undergoing wear, for which the size of the avalanches
can be used to estimate the size of the wear fragments. The
size of a burst avalanche, s, in our system is defined as the
number of springs that break simultaneously for a constant
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load �20�. The burst size distribution N�s�, is generated by
counting the number of bursts of size s that occur as the
system breaks down. Hemmer and Hansen �17� showed that
for a large class of failure threshold distributions in the fiber
bundle models, the bursts are distributed according to an
asymptotic power law,

lim
N→�

N�s�
N

� s−�, �22�

with a universal exponent �=5/2.

III. COMPUTATION METHOD

The mean-field theory presented above requires as input
the shear modulus G. Once the state of the system is known,
i.e., the number and position of the ruptured links is known,
the shear modulus of the system can be determined from Eq.
�10�. However, the position of the ruptured springs depends
on the sequence in which they rupture. The sequence, in turn,
depends on the local rupture thresholds and the applied
force. Even for moderate system sizes �N�1000� the num-
ber of possible sequences to failure becomes prohibitively
large; hence a statistical method is needed to generate an
average, or “most probable,” shear modulus curve as a func-
tion of the order parameter �. We take two different ap-
proaches to accomplish this: �a� a numerical scheme and �b�
an analytic procedure. We compare the mean-field predic-
tions with quasistatic simulations of the lattice breakdown.

A. Numerical scheme

The probability that the spring i breaks first under a uni-
form strain field is p=1/N, since the rupture limits are se-
lected from the same distribution. Here the springs are sub-
jected to a linear strain field, meaning that the probability
that the spring i breaks first can be written in the form

pi = wip with wi =
�i

+

�
i=1

N

�i
+

, �23�

where wi is a weighting factor based on the local strains �i
+ of

the springs and the plus superscript indicates that only posi-
tive strains are counted �cf. Eq. �5��.

The sequence of spring ruptures is then determined nu-
merically by selecting a random number from a uniform dis-
tribution in the interval �0,1�, and breaking the corresponding
spring �see Fig. 2�. The rupture probabilities, according to
Eq. �23�, are then recomputed and a new rupturing spring is
selected. The procedure is repeated until a complete path to

total failure is established. The average shear modulus curve
is then found by averaging over several such sequences. Fi-
nally, simple regression analysis is made to find a suitable
polynomial or power law expression approximating the av-
erage shear modulus curve.

A quasistatic method is used to perform the numerical
simulations of the breakdown of the spring system �Fig. 1�.
The simulation is initiated by associating a rupture limit to
each individual spring in the system. The limits are chosen
from a predefined distribution. A full set of rupture limits is
called a configuration. For each configuration, the computa-
tion starts with all links intact, �i=1, and the external load
equal to zero, f =0. Next, the load is incremented and the
local strains are computed according to Eq. �5�. The local
strains are then compared to their respective rupture limits. If
the local strain exceeds the rupture limit, then the link is
broken, i.e., the local stiffness is set equal to zero. If a rup-
ture has occurred, the local strains are recomputed and
checked once more against the rupture thresholds, otherwise
the computation proceeds with the next load increment.
When only one spring remains, the load loop is interrupted
and the computation proceeds to the next configuration.

Three different failure distribution functions are studied
here: �i� a uniform distribution in the interval ri� �0;2�,

��r� = � 1
2 , r � �0,2� ,

0, otherwise;
� �24�

�ii� a Weibull distribution with shape factor �=2 and location
parameter �=1,

��r� = � �

�
� r

�
��−1

e�r/���
, r � 0,

0, r � 0;
� �25�

�iii� a Gaussian �normal� distribution with mean value �=1
and standard deviation �=1,

��r� =
1

��2�
e−�r − ��2/2�2

. �26�

The critical values �c and fc can be estimated directly
from the mean-field analysis from Eq. �16�. For the uniform
distribution this equation is easily solved, leading to a func-
tional relationship between fc and �c. For the Weibull and
normal distributions, a Newton-Raphson scheme is em-
ployed to find the load corresponding to a given value of the
order parameter, by finding the roots of Eq. �16�. The result
is a line in the ��c , fc� plane, which can be compared with
the critical values from the quasistatic simulations.

B. Analytical procedure

The material constant G0 �cf. Eq. �20�� is determined ex-
actly when all the springs are intact, i.e., at �=1. For this
case, Eq. �10� reduces to the following simple relation:

G�=1 = G0 =
1 + N

− 2 + 4N
. �27�

Hence, as N→�, G0→1/4. The exact expression for G
consists of terms like �i=1

N �i, �i=1
N �ii, and �i=1

N �ii
2. With only

FIG. 2. Illustration of how the sequence of breaking of springs
is determined from a random number generated according to a uni-
form distribution �see Eq. �23��.
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one spring broken, denoted by j, the sums can be evaluated:

�
i=1

N

�i = N − 1, �28�

�
i=1

N

�ii = N2/2 + N/2 − j , �29�

�
i=1

N

�ii
2 = N3/3 + N2/2 + N/6 − j2. �30�

Hence, the slope of G for ��1 can be determined, once
the position of the first spring rupture is known, viz.,

�dG

d�
�

�=1
�

G�1� − G�1 − 1/N�
1/N

. �31�

We note that the first spring breaks according to a
linear distribution �cf. Eq. �23��, which is identified by
j=int�2�N−1� /9� where int�a� converts a value to integer
type. It corresponds to the average value of the linear distri-
bution. Inserting this j into Eqs. �29� and �30�, then evaluat-
ing Eq. �31� and letting N→�, leads to �dG /d����=1= 4

9 .
Consequently, the following linear approximation of G is
found:

G��1 =
4

9
� −

7

36
. �32�

For the system under study, the Nth spring is always the
last to break, since it is subject to compressive load. More-
over, the shear modulus is zero when only one spring re-
mains intact. When only two intact springs remain in the
system, denoting the next to last spring to break as m, the
sums in G �cf. Eqs. �28�–�30�� are evaluated:

�
i=1

N

�i = 2, �33�

�
i=1

N

�ii = N + m , �34�

�
i=1

N

�ii
2 = N2 + m2. �35�

Inserting Eqs. �33�–�35� in Eq. �10� and using �=2/N, it
is possible to carry out the limit analysis in Eq. �21�, once the
position of penultimate spring rupture is identified.

The springs closest to the lower side of the system �cf.
Fig. 1� are subject to compressive stresses during the major
part of the breakdown process. Assuming that the compres-
sive stresses are sufficiently large, it is possible to identify
the next to last rupture as m=N−1. Carrying out the limit
analysis leads to �=3. Hence, the analytic approximation for
G in the limit ��0 becomes

G��0 =
1

4
�3 � ���3. �36�

IV. RESULTS

The results of our computations of the shear modulus, the
order parameter vs the applied shear force, and the burst size
distribution are displayed in a number of figures. Figures
3�a� and 3�b� show the shear modulus averaged over 100
rupture sequences of 2001 springs. The sequences were gen-
erated according to the procedure described in Sec. III A.
This curve, henceforth, is called the average shear modulus
curve. These figures also show the lower and and upper
bounds of G���, respectively. The lower bound curve corre-
sponds to the breaking of the highest strained spring and the
upper curve to the breaking of the least strained spring. From
these figures, it can be deduced that G��� depends linearly
on � close to �=1, while it has a scaling behavior �power
law dependence� close to �=0 �cf. Eq. �20��. Note that the
average and lower bound shear modulus curves coalesce as
�→0 �see Fig. 3�b��. This validates the assumption that
spring N−1 is the second last to break and consequently Eq.
�36� is correct.

FIG. 3. Numerical simulation of G��� averaged over 100 ran-
domly ordered series of ruptures of 2001 springs, solid line. The
dotted and dashed lines depict the lower and upper bounds of G,
respectively. �a� and �b� show linear and logarithmic plots,
respectively.
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Using regression, linear and power law expressions
are fitted to the computed data. Here, the intervals
�� �0+;0.25� and �� �0.75;1.0� are chosen to determine
the power law and linear law, respectively. Our analysis
leads to the following expressions for G���:

G��0 � 0.217�3.1297, �37�

G��1 � − 0.222 59 + 0.471 54� . �38�

Figures 4�a� and 4�b� show the analytical �Eqs. �32� and
�36�� and numerical �Eqs. �37� and �38�� scaling and linear
laws, respectively, superimposed on the average shear modu-
lus curve. As can be expected, the approximated curves de-
viate for � in the mid-range ���0.5�.

A system size of N=10 001 springs and a load increment
of 	f =0.01/N are used in the numerical simulations �the
quasistatic method discussed in the foregoing section� pre-
sented here. To gather enough data for statistical predictions,
each simulation is repeated for M =1000 different configura-
tions of rupture thresholds r. Values from the last load step
before global breakdown are taken as critical values. Figure

5�a� displays the simulated critical values of the order param-
eter �c and the shear force fc, for the uniform, Weibull, and
normal distribution functions defined in Eqs. �24�–�26�. The
three distributions display similar results with respect to scat-
ter in fc and �c �see Figs. 5�b� and 5�c��. Using these results
�average values of G��c� ,�c, and fc�, we have determined
�0 in Eq. �17� for the uniform failure distribution given by
Eq. �24�. We found �0=1.042.

Next, we focus on the relationship between the scaling
variables � and f . Figures 6�a�–6�c� show the computed or-
der parameter � plotted against the applied load f for the
three distributions using the quasistatic method. The data
presented in the figures are averaged over 1000 configura-
tions of rupture thresholds. The displayed �� , f� plane is di-
vided into rectangles. The arithmetic mean of the values con-
fined within each rectangle is used to represent the data in
the figures. The number of points within each rectangle is
utilized as the weighting factor to fit a scaling law expression
Eq. �19� to the simulated data. The scaling form of the order
parameter predicted by the mean-field theory, Eq. �19�, is
also depicted in Figs. 6�a�–6�c�. The simulated data support
the validity of the mean-field analysis.

Finally, the important concept of burst distribution is ex-
plored. For a system undergoing wear, the size of the ava-
lanches can be used to estimate the size of the wear frag-
ments �2�. The size of an avalanche or burst, s, is defined as
the number of springs that break simultaneously for a con-
stant load �20�. The burst size distribution is generated by
counting the number of bursts of size N�s� occurring as the
system breaks down. Figures 7�a�–7�c� show the burst distri-
butions for the three chosen rupture threshold distributions
for the damage model considered here. The three figures dis-
play similar behavior. The figures also include a line with a
slope −5/2 �log-log scales�, which is the theoretical result
found for a fiber bundle model with global load sharing
�17,21�. The results indicate that this scaling law has rel-
evance for the system studied here.

V. DISCUSSION

The results presented in the preceding section show that
the average shear modulus is linearly proportional to the
damage in the beginning of the breakdown process and has
power law characteristics at end of the process �see Fig. 3�.
Consequently, the shear modulus can be approximated with
simple relations, which do not require knowledge of the path
to failure, i.e., the order in which the springs break. The
critical force and critical order parameter �damage� can be
estimated analytically using mean-field theory once the shear
modulus has been determined, provided that the distribution
of the disorder of the material is known. Here, it is assumed
that the disorder is quenched in the system and does not
change during the breakdown process �16�.

In the preceding sections, we showed that for ��0, the
shear modulus G scales as G���, with �=3, which we ob-
tained by analytical calculation, while numerical simulations
led to ��3.13 in the interval �� �0+;0.25�. These results
may be compared with properties of other condensed matter
systems, e.g., the macroscopic conductance in a resistor net-

FIG. 4. Approximate computations of the shear modulus G���.
The solid and dotted lines display numerical and analytical approxi-
mations, respectively. The broken line shows the curve found from
averaging over several sequences of spring ruptures �see Fig. 3�.
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work or the elastic modulus of gels in a polymer system �22�.
For lattice dimensions d�6, which corresponds to a mean-
field approximation, de Gennes found that �=3. This result
also conforms with a recent calculation by Xing et al. of the

FIG. 5. �a� The critical scaling variables �c versus fc for 1000
configurations, computed by the quasistatic method, of uniformly
ri� �0;2�, Eq. �24�, circles; Weibull �� ,��= �2,1�, Eq. �25�,
squares; and normal �� ,��= �1,1�, Eq. �26�, diamonds, distributed
rupture thresholds of N=10 001 springs. �b� and �c� display normal-
ized histogram distributions of �c and fc, respectively. Solid, dot-
ted, and dashed lines refer to the uniform, Weibull, and normal
distribution, respectively. The abscissas have been rescaled with the
mean value � and the standard deviation � to enable comparison
between results for the three rupture threshold distributions.

FIG. 6. The damage order parameter � versus the shear force f
averaged over 1000 configurations, computed by the quasistatic
method of �a� uniform ri� �0;2�, �b� Weibull �� ,��= �2,1�, and �c�
normal �� ,��= �1,1� distributions of rupture thresholds for N
=10 001 springs, respectively. The lines represent the mean-field
scaling behavior.
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scaling behavior of the shear modulus in a polymer system
�23�. Their renormalization group analysis shows that
�=3− 5

21�, with �=6−d, which is identical to the conductiv-

ity exponent of the random resistor network calculated by
Harris and Lubensky �24�.

The constitutive relation for damage, � vs f , for all three
statistical distributions �Figs. 6�a�–6�c�� indicates that � de-
creases slowly with the increase in f; then a sharp �discon-
tinuous� drop in � occurs, when the shear force reaches a
threshold value fc. This sudden transition in the order param-
eter and the fact that the scaling form given by Eq. �19�
describes the approach to fc so well �f � fc� indicates that
material breakdown is a first-order phase transition, e.g.,
similar to a spinodal decomposition �10�.

The burst distributions for the system using the three sta-
tistical distributions are displayed in Figs. 7�a�–7�c�. Here
the size distribution of avalanches is integrated over the load.
For a fiber bundle model �FBM� with global load sharing
�the load is evenly distributed over the remaining fibers� the
expected number of avalanches N�s�, where s is the size of
the avalanche, scales as N�s−�, with �=5/2 �17,21�. Al-
though this scaling law holds for a large class of threshold
distributions, this is not always the case �25�. A regression
analysis, using the numerical data shown in the figures, gives
an exponent close to the FBM value, 2.5±0.1.

It may be worth comparing our results with the random-
field Ising model predictions, which intend to describe the
behavior of many magnetic materials subjected to external
magnetic field H. For this system, the magnetization changes
through nucleation and motion of domain walls. The motion
is discrete, i.e., there will be magnetization bursts corre-
sponding to reorganization �or avalanche� of a domain of
spins which span several decades of size �26�. There will be
plenty of small avalanches of spins and fewer and fewer
avalanches of larger and larger sizes �27�. The power law
dependence for the probability of having an avalanche of a
given size has been determined �26�. It is shown that the size
distribution of all avalanches that occur in one branch of
hysteresis loop �for H from −� to +�� scales in the form
Nint�s−�F�s ,r�, where Nint is the integral of N over the
external field, F is a scaling function, and r is a “disorder”
parameter �28�. The mean-field computation of Perković
et al. �28� at a give value of r near the critical point resulted
in �= 9

4 , which is close to the corresponding value predicted
by the FBM. However, near the low-ordered disordered
phase close to the spinodal line the mean-field avalanche
exponent is calculated to be �= 5

2 �see Appendix A.5 of Dah-
men and Sethna �29��.

The breakdown of the system that we considered is simi-
lar to that of the FBM. The process of breakdown is envis-
aged to proceed by the formation of microcracks. The micro-
cracks are nucleated according to a linear distribution
function, which is proportional to the displacement field. The
cracks grow to a critical size and coalesce to form the final
crack. We found no indication that a single crack takes over
and dominates the breakdown process. This behavior was
also found in a two-dimensional mesh subject to a uniform
stress field �9�.

VI. CONCLUSION

We modeled an interface layer by N parallel elastic
springs that connected two rigid blocks. We loaded the sys-

FIG. 7. Burst size distributions averaged over 1000 configura-
tions using �a� uniform ri� �0;2�, �b� Weibull �� ,��= �2,1�, and �c�
normal �� ,��= �1,1� probability distributions of rupture thresholds
for N=10 001 springs. The straight lines have a slope of −2.5 �see
Eq. �22��.

J. KNUDSEN AND A. R. MASSIH PHYSICAL REVIEW E 72, 036129 �2005�

036129-8



tem by a shear force f acting on the top side. The springs
were assumed to have equal stiffness but were ruptured ran-
domly when the load reached a critical value fc. The state of
the material damage for the system was characterized by an
order parameter � varying between zero �complete break-
down� and 1 �intact�. The shear modulus for the system was
numerically simulated over the entire range of � and it was
found that G��0��3.13 and G��1��. The linear behavior
of G��� close to �=1 was confirmed analytically. Moreover,
our analytical calculation showed that G��0��3. We calcu-
lated � vs f numerically and determined their values at the
onset of breakdown, i.e., around ��c , fc�, and also found their
variation depending on the failure distribution function se-
lected. We noted that there was a discontinuous drop in �
around f = fc. The mean-field theory predicted this behaviour
for f � fc, leading to the conclusion that breakdown behaves

like a first-order phase transition. Finally, we calculated the
burst size distribution during rupture and found that the sys-
tem behaves according to the predictions of the fiber bundle
model.

The model presented here can be extended to treat a more
realistic representation of wear induced loads by considering
a two-dimensional lattice comprising a network of blocks
connected to each other and to a rigid indenter by elastic
springs.
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